top of page

Altın Oran: “Evrenin Matematiği“

Evrende görebileceğimiz tüm nesne ve varlıkların parçaları arasında bir uyumun olduğunu ve binlerce yıldır hiç değişmediği saptandığı için matematik sistemi olarak bilinen bağıntıya “altın oran” denilmektedir. Sanatta ve matematikte çok kez karşılaşabileceğimiz bu oran, aslında basit bir kural üzerine oturtulmuştur. Fakat gözlemleyebildiğimiz bütün evrende bu oranın geçerli ve tutarlı olarak göze çarpması, insanları şaşkına çevirecek kadar ciddi bir sistemi ortaya koyuyor. Evrenin var oluşundan bu yana tutarlı olarak bütün varlıklarda aşağıda açıklanacak olan 1,618’e karşılık gelen bir oranın bulunması, dünyaca ünlü matematikçilerin de hayranlıkla incelediği ve kendi çalışmalarında kullandıkları bir konu alanı olmuştur.

İnsanlık tarihinin başlangıcından beri, evrendeki düzeni keşfetme güdüsü de var olmuştur. Geçen on binlerce yıl içinde yapılan tüm çalışmalar, evrenin alelâde bir düzen içinde yaratılmadığını, hâlâ insan aklının alamayacağı kadar sistematik bir ölçü içerisinde yaratıldığını ortaya koymuştur. Evrenin bu sistemi, kuşkusuz sayılar üzerine oturtulmuştur. Var olan her şey, bir sayıya karşılık gelmektedir. Dil bilimi bile matematiksel kurallar sayesinde gelişim göstermektedir. Ve biz bu sayıları, daha çok gündelik matematik hesaplamalarında, ölçüp tartmada, mühendislikte ve bunun gibi basit konular üzerinde incelemeye çalışıyoruz. Felsefi boyutta düşünüldüğünde, doğa yasalarının temelinde de bu sayılar bulunmaktadır. Bu anlamda evrene hâkim olan sayıların yasası, kuşkusuz matematik düzenini ortaya koyacaktır. İşte bu düzeni görmemizi sağlayacak anahtar, altın orandır…

İlk olarak kimler tarafından keşfedildiği bilinmese de, Mısırlıların ve Yunanlıların bu konu üzerinde yapmış oldukları bazı çalışmalar olduğu görülmektedir. Öklid, milattan önce 300’lü yıllarda yazdığı “elementler” adlı tezinde “ekstrem ve önemli oranda bölmek” olarak altın oranı ifade etmiştir. Mısırlıların Keops piramidinde, Leonardo da Vinci’nin “İlahi Oran” adlı çalışmada sunduğu resimlerde ve aşağıda onlarcası sayılacak nesne ve çalışmalarda kullanıldığı bilinen altın oran, ”Fibonacci Sayıları” olarak da bilinmektedir. Orta Çağ’ın en ünlü matematikçisi olan İtalyan kökenli Leonardo Fibonacci, birbiri arasında ardışık ilişki ve olağanüstü bir oran bulunduğunu iddia ettiği sayıları keşfetmiştir. Evrendeki muhteşem düzenle birebir örtüşen bu sayıları keşfetmesi nedeniyle, altın orana da adının ilk iki harfi olan “Fi” (Φ) sayısı denilmiştir.

Bilindiği üzere matematikte 3,14 sayısına karşılık gelen ve bir dairenin çevresinin çapına bölümü ile elde edilen “pi” (Π) sayısı bulunmaktadır. Altın oran da, tıpkı pi sayısı (Π) gibi, matematikte 1,618’e eşit olan sabit sayıya verilen addır ve “Fi” (Φ) simgesiyle gösterilmektedir. Fi sayısının (Φ), yani altın oranın, bulunabilmesi için temel olarak şu matematik kuralından yararlanılmaktadır:

“Bir AC doğru parçası öyle bir B noktasından bölünmelidir ki, küçük parçanın büyük parçaya oranı ile büyük parçanın tüm doğruya oranı birbirine eşit olmalıdır. Yani yukarıdaki doğru parçasından tarif edebileceğimiz üzere, AB küçük parçasının BC büyük parçasına oranı ile BC büyük parçasının AC doğrusunun tamamına oranı birbirine eşit olmalıdır.” Ayrıca bu kural, “x+1=x2” denkleminden “x2-x-1=0” denkleminin türetilmesini sağlamıştır.

Altın oranın karşılık geldiği 1,618 sayısının matematikteki en şaşırtıcı yanı, tersinin bir eksiğine; karesinin ise bir fazlasına eşit olmasıdır. Bu yönüyle altın oran (Φ) evrende eşi benzeri olmayan, bu özelliğe sahip tek sayıdır. Bu kuralı biraz açarsak, şunları söyleyebiliriz: Bir sayının tersi, o sayının 1’e bölünmesi ile elde edilen sonuçtur. Örneğin 2‘nin tersi 1/2=0,5‘tir. Altın oranın tersi ise, 1 / 1,618 = 0,618‘dir. Yani altın oranın tersi, kendisinin 1 eksiğine eşittir. Aynı şekilde altın oranın karesi (1,618)2 = 2,618‘e, yani kendisinin bir fazlasına eşittir. Bu, şaşkınlık verecek bir durumdur ve bu özellikte başka bir sayı yoktur!

sayısı, altın oranın kısaltılmış biçimini vermektedir. Altın oran, doğadaki tüm varlıklar üzerinde gösterilebileceği için, 1,618 değerine ulaşmak sanıldığı kadar zor değildir. Fakat bu oranın sistemini iyice kavrayıp, nesneler üzerinde ona göre bir ölçü belirlemek gerekmektedir. Altın oranın en iyi anlaşılabildiği şekil, altın dikdörtgen denilen ve bir kareden oluşan geometrik biçimdir.

Altın oran sabit değerini kendi sıralı sayı sistemi içerisinde gösteren İtalyan matematikçi Leonardo Fibonacci, bir gün tavşan çiftliği bulunan bir arkadaşıyla tavşanların yavrulaması üzerine konuşurken, En az iki aylık tavşanların yavruladığını öğrenmiş ve buna göre bir çift tavşanla yola çıkıldığında örneğin 100 ay sonra kaç tavşanın olacağı konusunda tartışmışlardır. Bunu bir matematik formülü ile açıklamaya çalışan Fibonacci, hangi ayı bulmak istiyorsak ondan önceki iki ayı toplayıp sonuca ulaşmamız gerektiği kanısına varmıştır. Ve bu çabası sonucunda kendi adıyla anılan sayıları bulmuştur.

“0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181…”

Yukarıda gösterilen Fibonacci, kendisinden önceki iki sayının toplamı ile devam etmektedir. Örneğin k sayısı, kendisinden önceki iki sayının (1+1); 13 sayısı da kendisinden önceki iki sayının (5+8) toplamını göstermektedir. “İyi de, peki bu sayıların altın oran ile bağlantısı nedir?” sorusu aklınıza gelebilir, onu da şöyle açıklayalım: Bir Fibonacci sayısının ile kendinden önceki sayıya bölümü ile elde edilen sonuç, 1,618’dir. Örneğin; 987 / 610 = 1,618032… sonucunu vermektedir. Bu durum, 89’dan daha küçük olan Fibonacci Sayıları için 0,01 gibi küçük bir farklılıkla ortaya çıksa da, büyük sayıların tamamında sonuç aynıdır.

Altın oran veya Fibonacci Sayıları, bugüne kadar insan yapımı birçok çalışmada kullanılmıştır. Bunun yanında doğada var olan nesnelerin birçoğunda altın oranın var olduğu keşfedilmiştir.

Evren bir sayısal sistem üzerine oturtulmuştur. Evrende var olan her şey, bir sayısal değere karşılık gelmektedir ve bunlar kuşkusuz bir düzen içerisinde yer almaktadır. Altın oran, yukarıdaki örneklerden de anlaşılacağı üzere hem doğada yaratıldığı gibi var olan canlı – cansız varlıklar hem de insanoğlunun ürettiği nesneler üzerinde birebir görülmektedir.

Toros Dağları’nın kıvrımından tutun da, kaşımızla gözümüz arasındaki uzaklığın birbirine oranına kadar en açık örneklerde görebildiğimiz altın oran, bazen gözle göremeyeceğimiz kadar küçük ayrıntılarda gizlenmiş olabiliyor. Fakat gerçek olan şu ki, evren ciddi bir matematik kuralına göre işliyor.

Şaşırdınız, değil mi?

Tanıtılan Yazılar
Son Paylaşımlar
Arşiv
Etiketlere Göre Ara
Bizi Takip Edin
  • Facebook Basic Square
  • Twitter Basic Square
  • Google+ Basic Square
bottom of page